朴素贝叶斯之新浪新闻分类(Sklearn)
1 中文语句切分
考虑一个问题,英文的语句可以通过非字母和非数字进行切分,但是汉语句子呢?就比如我打的这一堆字,该如何进行切分呢?我们自己写个规则?
幸运地是,这部分的工作不需要我们自己做了,可以直接使用第三方分词组件,即jieba,没错就是”结巴”。
jieba已经兼容Python2和Python3,使用如下指令直接安装即可:
pip3 install jieba
Python中文分词组件使用简单:
新闻分类数据集我也已经准备好,可以到我的Github进行下载:https://github.com/miraitowa/Machine-Learning
数据集是直接从网上下载得到:
数据集已经准备好,接下来,让我们直接进入正题。切分中文语句,编写如下代码:
import pandas as pd
import numpy
import jieba
#pip install jieba
** 数据源 **
df_news = pd.read_table('./data/val.txt', names=['category', 'theme','URL','content'],encoding='utf-8')
df_news = df_news.dropna()
df_news.head()
df_news.shape #查看数据类型
分词:使用结巴分词器
content = df_news.content.values.tolist()
print (content[1000])
content_S = []
for line in content:
current_segment = jieba.lcut(line)
if len(current_segment) 1 and current_segment != '\r\n': #换行符
content_S.append(current_segment)
content_S[1000]
df_content = pd.DataFrame({'content_S':content_S})
df_content.head()
stopwords = pd.read_csv("stopwords.txt",index_col=False,sep="\t",quoting=3,names=['stopwords'],encoding='utf-8')
stopwords.head(10)
def drop_stopwords(contents,stopwords):
contents_clean = []
all_words = []
for line in contents:
line_clean = []
for word in line:
if word in stopwords:
continue
line_clean.append(word)
all_words.append(str(word))
contents_clean.append(line_clean)
return contents_clean,all_words
contents = df_content.content_S.values.tolist()
#stopwords = stopwords.stopword.values.tolist()
contents_clean,all_words = drop_stopwords(contents,stopwords)
df_content=pd.DataFrame({'contents_clean':contents_clean})
df_content.head()
df_all_words=pd.DataFrame({'all_words':all_words})
df_all_words.head()
words_count=df_all_words.groupby(by=['all_words'])['all_words'].agg({"count":numpy.size})
words_count=words_count.reset_index().sort_values(by=["count"],ascending=False)
words_count.head()
from wordcloud import WordCloud
import matplotlib.pyplot as plt
%matplotlib inline
import matplotlib
matplotlib.rcParams['figure.figsize'] = (10.0, 5.0)
wordcloud = WordCloud(font_path="./data/simhei.ttf",background_color="white",max_font_size=80)
word_frequence = {x[0]:x[1] for x in words_count.head(100).values}
wordcloud=wordcloud.fit_words(word_frequence)
plt.imshow(wordcloud)
TF-IDF: 提取关键词
import jieba.analyse
index = 1000
print (df_news['content'][index])
content_S_str = "".join(content_S[index])
print (" ".join(jieba.analyse.extract_tags(content_S_str, topK=5, withWeight=False)))
LDA: 主题模型
格式要求:list of list形式,分词好的整个预料
from gensim import corpora, models, similarities
import gensim
#做映射 相当于词袋
dictionary = corpora.Dictionary(contents_clean)
corpus = [dictionary.doc2bow(sentence) for sentence in contents_clean]
lda = gensim.models.ldamodel.LdaModel(corpus=corpus, id2word=dictionary,num_topics=20)
#一号分类结束
print(lda.print_topic(1, topn=6))
for topic in lda.print_topics(num_topics=20, num_words=5):
print (topic[1])
df_train=pd.DataFrame({'contents_clean':contents_clean,'label':df_news['category']})
df_train.tail()
df_train.label.unique()
label_mapping = {"汽车": 1, "财经": 2, "科技": 3, "健康": 4, "体育":5, "教育": 6,"文化": 7,"军事": 8,"娱乐": 9,"时尚": 0}
df_train['label'] = df_train['label'].map(label_mapping)
df_train.head()
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(df_train['contents_clean'].values, df_train['label'].values, random_state=1)
#x_train = x_train.flatten()
x_train[0][3]
words = []
for line_index in range(len(x_train)):
try:
#x_train[line_index][word_index] = str(x_train[line_index][word_index])
words.append(' '.join(x_train[line_index]))
except:
print (line_index,word_index)
words[0]
print(len(words))
3750
from sklearn.feature_extraction.text import CountVectorizer
texts=["dog cat fish","dog cat cat","fish bird", 'bird']
cv = CountVectorizer()
cv_fit=cv.fit_transform(texts)
print(cv.get_feature_names())
print(cv_fit.toarray())
print(cv_fit.toarray().sum(axis=0))
from sklearn.feature_extraction.text import CountVectorizer
texts=["dog cat fish","dog cat cat","fish bird", 'bird']
cv = CountVectorizer(ngram_range=(1,4))
cv_fit=cv.fit_transform(texts)
print(cv.get_feature_names())
print(cv_fit.toarray())
print(cv_fit.toarray().sum(axis=0))
from sklearn.feature_extraction.text import CountVectorizer
vec = CountVectorizer(analyzer='word', max_features=4000, lowercase = False)
vec.fit(words)
from sklearn.naive_bayes import MultinomialNB
classifier = MultinomialNB()
classifier.fit(vec.transform(words), y_train)
MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True)
test_words = []
for line_index in range(len(x_test)):
try:
#x_train[line_index][word_index] = str(x_train[line_index][word_index])
test_words.append(' '.join(x_test[line_index]))
except:
print (line_index,word_index)
test_words[0]
print(len(test_words))
1250
classifier.score(vec.transform(test_words), y_test)
0.7928
from sklearn.feature_extraction.text import TfidfVectorizer
vectorizer = TfidfVectorizer(analyzer='word', max_features=4000, lowercase = False)
vectorizer.fit(words)
from sklearn.naive_bayes import MultinomialNB
classifier = MultinomialNB()
classifier.fit(vectorizer.transform(words), y_train)
classifier.score(vectorizer.transform(test_words), y_test)
总结
在训练朴素贝叶斯分类器之前,要处理好训练集,文本的清洗还是有很多需要学习的东西。
根据提取的分类特征将文本向量化,然后训练朴素贝叶斯分类器。